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Abstract: The Taiwan Strait (TS) is one of the main sources of phosphate that supports the
large fish catches of the phosphate-limited East China Sea (ECS). The Penghu Channel is the
deepest part of the TS, and most of the flow of the TS towards the ECS is principally through
this channel. Empirical equations that are based on measurements made during 19 cruises
(2000–2011) were combined with water velocity, salinity, and temperature, which were modeled
using HYCOM (the Hybrid Coordinate Ocean Model) to obtain the annual fluxes for total alkalinity
(TA), dissolved inorganic carbon (DIC), nitrate plus nitrite, phosphate, and silicate fluxes. The TA
and DIC are mainly transported in the top layer (0–55 m) because the current is much stronger there
than in the bottom layer (55–125 m) whereas the TA and DIC concentrations in the top layer are only
slightly smaller compared with the bottom layer. In contrast, the nitrate plus nitrite flux is mainly
transported in the bottom layer because the concentrations are much higher in the bottom layer.
Generally, nutrient flux increases with the Pacific Decadal Oscillation (PDO) index, but TA and DIC
fluxes increase as the PDO index decreases.
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1. Introduction

The Taiwan Strait (TS) directly connects the South China Sea (SCS) and the East China Sea (ECS),
which are two bountiful marginal seas. The three major water masses in the TS are the Minzhe Coastal
Water, the surface water of the SCS, and the surface water of the West Philippines Sea (WPS). Generally,
the Minzhe Coastal Water has the highest nutrient concentrations among these three water masses,
and the surface water of the WPS, which is brought into the TS through Kuroshio intruding the SCS,
contains the lowest nutrient concentrations. The TS transports a mixture of SCS water and WPS
water to the ECS mostly in the summer, while the Minzhe Coastal Water flows southward along the
western side of the TS to the northern SCS in the winter. Through the exchange of water masses, the TS
transports nutrients between these two seas [1,2].

The nutrient budgets in the ECS are influenced by fluvial transport, Kuroshio Intermediate
Water, and TS seawater [3,4]. The nitrate and phosphate fluxes in the Yangtze River have increased
dramatically with the population and consumption of fertilizer in the basin, but the silicon flux
is reduced by sediment trapping in reservoirs [5]. The ecosystem in the Yangtze estuary has
changed as the number of non-siliceous algae and the red tides of harmful algal blooms have
increased because of the varied nutrient concentration ratios [6,7]. The biological uptake ratio
between nitrogen and phosphate is around 16:1 in the ocean, and this is called the Redfile ratio.
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The fluvial transport with extremely high N/P ratio (long term annual averaged N:P ≈ 250:1, [5])
has also caused the ECS to become phosphate-limited, while the other two main water masses
of the ECS are nitrogen-limited [8]. Chen and Wang [3] estimated that the TS annually delivers
22.4 × 109 mol year−1 (0.71 kmol s−1), 2.24 × 109 mol year−1 (0.07 kmol s−1) and 56 × 109 mol year−1

(1.78 kmol s−1) of nitrogen, phosphate and silicate to the ECS, and that equal 0.50, 13 and 0.65 times
the fluxes of nitrogen (1.41 kmol s−1), phosphate (0.005 kmol s−1) and silicate (2.7 kmol s−1)
from the Yangtze River [5]. Liu et al. [9] reported summer nitrate, phosphate, and silicate fluxes
in the TS at 1.90 kmol N s−1, 0.25 kmol P s−1, and 8.4 kmol Si s−1, respectively, in August 1994;
and winter nitrate, phosphate, and silicate fluxes in the TS of 12.9 kmol N s−1, 0.85 kmol P s−1,
and 22.6 kmol Si s−1, respectively, in March 1997. Notably, the values in March might have been
significantly overestimated [10]. Chung et al. [11] calculated nitrate and phosphate fluxes in the TS
at 0.96 kmol N s−1 and 0.16 kmol P s−1 in May 1999, and 1.82 kmol N s−1 and 0.34 kmol P s−1 in
August 1999, based on measurements made during one cruise in that month.

Located in the southeast and deepest part of the TS, the Penghu Channel (PHC) is funnel-shaped
and is responsible for 60% of the northward flow [12,13]. The Strait receives southwesterly and
northeasterly winds in the summer and winter, respectively, and the water transport in the TS varies
with the wind stress [14,15]. The northward transports are highest and lowest in the summer and
winter, respectively, and the water flux direction even becomes southward during strong northeasterly
winds [16]. The northward transport in the TS contains mixed SCS and WPS seawater, and the mixing
percentage varies with the season. In general, the amount of WPS water in the PHC during winter is
greater than that in summer [17]; this result reflects the seasonal westward Kuroshio intrusion through
the Luzon Strait, which forms the boundary between the SCS and WPS, bringing WPS water into the
northern SCS [18].

Along with its seasonal variation, the Kuroshio intrusion is affected by large-scale climate events
and climatic patterns, such as El Niño and the Pacific Decadal Oscillation (PDO) [19,20]. The subsurface
WPS water is typically warmer, saltier and more oligotrophic than the subsurface SCS water in the
similar layer [1,21]. Accordingly, the nutrient and carbon concentrations of the seawater in the PHC
vary with the ratio of the amounts of the different seawaters. However, the interannual and seasonal
interactions among nutrient flux, inorganic carbon flux, the biological effects, and the water flux
are still unknown. This investigation concerns the interannual and seasonal nutrient and inorganic
carbon fluxes. It also provides a mathematical method to synthesize long-term averaged chemical
concentrations to estimate chemical fluxes in the PHC.

2. Materials and Methods

To estimate continuous nutrient and inorganic carbon fluxes, the chemical concentrations were
simulated based on the measured data. The daily salinity, temperature, and flow velocity in the
PHC were obtained using the Hybrid Coordinate Ocean Model (HYCOM). The sampling sites are
located between 22.5–23.5◦ N and 119.5–120.1◦ E (Figure 1), and most of them are close to 23◦ N.
A total of 555 bottle samples were collected during 19 cruises from 2000 to 2011 using a CTD/Rosette
sampler, while salinity and temperature were recorded in situ. The nutrient concentrations were
determined by published methods with flow injection analyzers. Nitrate plus nitrite (N) are the major
species of dissolved inorganic nitrogen in the seawater, and the N concentration was obtained using
the pink azo dye method [22], with a precision of approximately ±1% at 35 µmol kg−1 and ±3% at
1 µmol kg−1. Phosphate (P) concentration was measured using the molybdenum blue method [23]
with a precision of approximately ±0.5% at 2.5 µmol kg−1 and ±3% at 0.1 µmol kg−1. Silicate (Si)
concentration was measured using the silicon molybdenum blue method with a precision of around
0.6% at 150 µmol kg−1 and 2% at 5 µmol kg−1. DIC concentration was determined using 10%
phosphoric acid to acidify the samples, and then quantifying the produced CO2 gas using an infrared
gas analyzer (AS-C3 Apollo Scitech), a single operator multi-parameter metabolic analyzer (SOMMA),
or a coulometric detector. TA was measured using the open-cell method of potentiometric titration at
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25 ◦C with a PC-controlled titration cell [24,25]. The end points of titration were determined using the
Gran Function with a precision of 0.1% [26].Sustainability 2018, 10, x FOR PEER REVIEW  3 of 15 
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residual standard error (RSE) for individual formula. 
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DIC −98,869.3 5492.619 528.735 −73.844 0.706 −16.754 0.89 9.3 
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summer 
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DIC −3359.4 287.013 0.236 −3.389 0.419 −0.938 0.91 19.8 
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P -8.9 0.126 0.423 0.007 0.004 −0.019 0.94 0.1 
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autumn 
TA 24,586.7 −1270.450 −119.310 18.098 0.013 3.409 0.93 6.3 
DIC 8352.6 −433.966 48.191 7.426 −0.140 −1.592 0.97 8.9 

Figure 1. Sampling area. (a) Black square delineates HYCOM data area; and (b) symbols represent
stations where water is sampled.

To estimate the daily average chemical concentrations, simulation models were derived using
in situ temperature, salinity, and measured chemical concentrations. A second-order polynomial
regression model was selected using leave-one-out cross-validation because it minimized the mean
square error of prediction [27]. (See Appendix A for more detail.) Table 1 presents the coefficients
of regression fits, residual standard error, and adjusted coefficients of determination. Each adjusted
determination coefficient between the seasonal chemical simulation result and the measured data
exceeded 0.7, so the model captured more than 70% of the variability of the original data. The low
probability values (p < 0.001) suggest that simulation models are compatible with the measured data
(Table 1). To compare the measured and fitted results, the mentioned equations (Table 1) and the in
situ temperature and salinity values that were collected with bottle samples were utilized to calculate
the fitted chemical concentrations. Significant positive correlations existed between the approximately
500 measured and fitted values of TA, DIC, N, P, and Si concentrations, and the simulated performance
values expressed more than 88% of measured data, according to the determination coefficients
(Figure 2).

Table 1. The constants of seasonal simulated chemical equation, adjusted R-squared (Adj. R2),
and residual standard error (RSE) for individual formula.

Equation Z = z0 + a × Salinity + b × Temperature + c × Salinity2 + d × Temperature2 + e × Salinity × Temperature

Season Parameter z0 a b c d e Adj. R2 RSE

winter

TA −29,747.4 1432.897 520.565 −15.022 −0.890 −13.908 0.83 8.0
DIC −139,348.9 7967.724 332.260 −111.891 0.000 −10.115 0.88 11.0
N −3986.3 277.336 −64.615 −4.549 0.264 1.487 0.87 0.9
P −221.0 14.045 −1.649 −0.213 0.015 0.026 0.82 0.1
Si 5700.9 −290.119 −61.750 3.811 0.364 1.264 0.82 1.4

spring

TA 87661.8 −4651.633 −529.212 63.373 0.663 14.462 0.72 6.9
DIC −98,869.3 5492.619 528.735 −73.844 0.706 −16.754 0.89 9.3
N −7366.1 406.321 33.510 −5.524 0.095 −1.129 0.75 0.9
P −322.4 16.496 3.403 −0.203 0.005 −0.108 0.70 0.1
Si −3730.6 200.360 26.152 −2.561 0.183 −1.044 0.75 1.3



Sustainability 2018, 10, 372 4 of 15

Table 1. Cont.

Equation Z = z0 + a × Salinity + b × Temperature + c × Salinity2 + d × Temperature2 + e × Salinity × Temperature

Season Parameter z0 a b c d e Adj. R2 RSE

summer

TA 10,896.0 −465.743 −106.446 6.380 0.226 2.735 0.87 11.2
DIC −3359.4 287.013 0.236 −3.389 0.419 −0.938 0.91 19.8
N −261.8 9.595 6.794 −0.006 0.066 −0.314 0.93 1.0
P -8.9 0.126 0.423 0.007 0.004 −0.019 0.94 0.1
Si 93.8 1.514 −8.143 −0.026 0.141 0.004 0.92 1.5

autumn

TA 24,586.7 −1270.450 −119.310 18.098 0.013 3.409 0.93 6.3
DIC 8352.6 −433.966 48.191 7.426 −0.140 −1.592 0.97 8.9
N 78.9 −12.115 10.617 0.317 0.028 −0.370 0.92 0.7
P 77.6 −4.783 0.368 0.075 0.001 −0.014 0.79 0.1
Si 1843.8 −94.930 −14.806 1.260 0.071 0.303 0.86 1.1
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Figure 2. The correlations between fitted and measured concentrations of (a) TA; (b) DIC; (c) N; (d) P;
and (e) Si. The fitted data were calculated based on the equations for four seasons in Table 1 at the
temperature and salinity of bottle samples.

To quantify the contribution from each predictor variable to simulation results, the R-squared
values in different situations were calculated. The temperature is more important than the salinity as
a predictor variable in the chemical concentration models except for TA fitted model during winter
and spring (Table 2). Comparing in situ temperature and the daily temperature that was simulated
using the HYCOM demonstrates that the simulation yielded underestimates in the surface layer
(0–55 m) but overestimates in the bottom layer (55–125 m, Figure 3a). On the contrary, the HYCOM
salinity and fitted N values were overestimated in the surface layer but were underestimated in
the bottom (Figure 3b,c). Since temperature is the major controlling factor in the chemical model,
the differences between the in situ temperature and the HYCOM model temperature caused simulated
N concentrations to vary. There were larger variations in the bottom layers of temperature and N
differences than in the surface layers, but the variation of salinity difference was lower in the bottom
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layer than in the surface layer (Figure 3). The results also support the conclusion that the simulated N
concentrations are less influenced by salinity than by temperature. The differences between simulated
and measured data may have had the following few causes; (1) the variation between each single
measurement and the daily average; (2) the assumption that biological production and consumption
do not vary within a season; (3) the simplification of chemical concentrations using a fixed water mass
mixing ratio between the SCS and WPS waters; and (4) the deviation of HYCOM results.

Table 2. The R-squared for equations considering temperature only, temperature and salinity without
interaction, and temperature and salinity with interaction.

Season Parameter Temp. Only Temp. + Sal.
(No Interaction)

Temp. + Sal.
(with Interaction)

winter

TA 0.02 0.80 0.83
DIC 0.77 0.87 0.88
N 0.82 0.84 0.87
P 0.82 0.82 0.82
Si 0.81 0.81 0.82

spring

TA 0.47 0.70 0.72
DIC 0.87 0.89 0.89
N 0.75 0.74 0.75
P 0.68 0.69 0.70
Si 0.75 0.74 0.75

summer

TA 0.70 0.87 0.87
DIC 0.87 0.91 0.91
N 0.92 0.92 0.93
P 0.94 0.94 0.94
Si 0.93 0.93 0.92

autumn

TA 0.74 0.93 0.93
DIC 0.96 0.97 0.97
N 0.91 0.92 0.92
P 0.77 0.79 0.79
Si 0.85 0.86 0.86
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Figure 3. The correlations between (a) the difference between HYCOM temperature and measured
temperature versus measured temperature; (b) the difference between HYCOM salinity and measured
salinity versus measured salinity; and (c) the difference between stimulated N concentrations based on
HYCOM data and measured N concentration versus measured N concentration.

To estimate the daily average concentration of each chemical parameter, the double integral
mean value theorem was used. By Chebyshev’s inequality [28], the true values of daily salinity
(xs) and temperature (xt) are 75% likely to be within two deviations of the daily average of salinity
(xs − 2ds , xs + 2ds) and two deviations of the daily average temperature (xt − 2dt , xt + 2dt) if ds
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and dt are close to the true standard deviations. Let f be the mean value of f (xs, xt) over the above
intervals under the model. According to the mean value theorem for a double integral [29],

f =
1

(4ds)(4dt)

∫ xs+2ds

xs−2ds

∫ xt+2dt

xt−2dt
f (xs, xt)dxtdxs. (1)

With properly defined ds and dt, f can be regarded as an approximation to the true daily average
of a chemical parameter in the model. Appendix A presents details of the model selection and the
fitted daily average values of chemical parameters.

The daily salinity, temperature, and water velocity along 23.04◦ N from 119.44 to 120.08◦ E were
obtained using HYCOM + NCODA (Navy Coupled Ocean Data Assimilation) Global 1/12◦ Reanalysis
from January 1993 to December 2012. Water flux was calculated using the daily model water velocity
(v; m s−1), the depth layer (diz; m), and the distance between two adjacent stations (dx; m):

water fluxestimated =

n∫
i=1

ki∫
k=1

v(x, z)× diz × dx, (2)

where i and n are the index of a station and the total number of stations, respectively; k is the layer
number at the ith station; ki is the bottom layer at the ith station. The chemical fluxes were generated as:

chemical fluxestimated =

n∫
i=1

ki∫
k=1

C(x, z)× v(x, z)× diz × dx, (3)

where C(x, z) was calculated from the aforementioned second-order polynomial regression models
and the double integral mean value. The unit of the chemical fluxestimated at the study section is
mole s−1. The positive value represents a northward transport chemical quantity through the profile,
and negative value is a southward transport.

3. Results

3.1. Seasonal Profiles

Since the PHC is directly and indirectly influenced by seasonal monsoons, the seawater mixing
ratio and water transport velocity vary over time. The model salinity increased with depth from 33.9
to 34.8, but the temperature decreased with depth from 29 ◦C to 18 ◦C (Figure 4a–d). The salinity and
temperature in winter and spring varied little between the surface and bottom layers, whereas those in
summer and autumn varied more (Figure 4a,b). The differences in salinity and temperature between
the surface and bottom layers were largest in the summer, and the highest and lowest salinities and
temperatures were also found in this season (Figure 4c,d). The distribution of the P concentration
followed the salinity distribution, and the P concentration is the highest in the bottom layer in
summer. However, the distribution of the velocity differs from those of the aforementioned parameters.
In autumn and winter, the velocity is highest in the middle layer of the deepest part of the PHC around
119.8◦ E (Figure 4e,h), but in spring and summer, it is highest in the surface layer (Figure 4f,g).
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weighted-average gridding method in Ocean Data View [33] was used to interpolate and extrapolate 
data associated with a single profile along 23.04° N from 119.4 to 120.08° E. The average differences 
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Figure 4. The left panel is seasonal HYCOM model salinity and temperature profile in the PHC during
(a) winter; (b) spring; (c) summer; and (d) autumn. The color area represents different temperature
ranges, and the black lines mean salinity contours. The right panel is seasonal HYCOM model velocity
and simulated P concentrations in the PHC during (e) winter; (f) spring; (g) summer; and (h) autumn.
The color area is different P concentration range, and the positive (negative) values on black lines are
northward (southward) velocity.

3.2. Time Series of Estimated Fluxes and Physical Data

The simulated physical data and fluxes exhibit obvious seasonal variations (Figure 5). The 20-year
average water velocity (1993–2012) is around 0.15 ± 0.08 m s−1 northward, but the velocities become
negative values southward during the La Niña winters (January, December 2011 and January 2012;
grey areas in Figure 5a). The average water flux is 0.81 ± 0.43 Sverdrup (Sv, 1 Sv = 106 m3 s−1), which is
approximately 41~68% of the reported water transport in the TS (1.2~2.0 Sv) [30–32]. The annual
average TA, DIC, N, P, and Si fluxes are 1.87 ± 0.79 × 106 mol C s−1, 1.65 ± 0.71 × 106 mol C s−1,
1203 ± 994 mol N s−1, 132 ± 85 mol P s−1, and 3062 ± 1828 mol Si s−1, respectively. The area of study
section is 5.4 km2, and the average TA, DIC, N, P, and Si per-area fluxes are 346 kmol C km−2 s−1,
306 kmol C km−2 s−1, 0.2 kmol N km−2 s−1, 0.02 kmol P km−2 s−1, and 0.6 kmol Si km−2 s−1.

The PHC is divided into top and bottom layers (red and blue lines in Figure 5) at depths of 0–55 m
and 55–125 m, respectively. The cross-sectional areas of the top and bottom layers are 3.5 km2 and
1.9 km2, respectively. The average velocity, water flux, area-weighted temperature, TA, and DIC fluxes
in the top layer exceed those in the bottom layer. On the other hand, the area-weighted salinity and
nutrient fluxes in the bottom layer exceed those in the top layer. The annual average TA, DIC, N, P,
and Si fluxes in the top layer (bottom layer) are, 1.39(0.48) × 106 mol C s−1, 1.20(0.45) × 106 mol C s−1,
517(686) mol N s−1, 71(61) mol P s−1, and 1800(1262) mol Si s−1, respectively.

3.3. Comparison between Measured and Simulated Data

To compare the data measured in situ in 19 cruises with the simulated data, the weighted-average
gridding method in Ocean Data View [33] was used to interpolate and extrapolate data associated with
a single profile along 23.04◦ N from 119.4 to 120.08◦ E. The average differences (simulated—measured
in 19 cruises) in salinity (∆S) and temperature (∆T) are 0.063 ± 0.237 and 0.246 ± 1.086 ◦C, respectively.
For TA, DIC, N, P, and Si fluxes, the average differences are 0.001 ± 0.017 × 106 mol C s−1 (∆TA),
−0.010 ± 0.033 × 106 mol C s−1 (∆DIC), −409 ± 1064 mol N s−1 (∆N), −22 ± 68 mol P s−1 (∆P),
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and −588 ± 1664 mol Si s−1 (∆Si), respectively. Generally, the simulated data yield overestimates of
salinity, temperature, and TA flux, but underestimates of DIC, N, P, and Si fluxes. The ∆TA and ∆DIC
fluxes positively correlate with ∆S, but the differences ∆N, ∆P, and ∆Si fluxes are negatively correlated
with ∆T (Figure 6). The daily chemical concentration was calculated by averaging the maxima and
minima of the estimated concentrations that were mentioned in Section 2.
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flux periods.
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4. Discussion

4.1. Annual Variation

The two major factors that drive water transportation in the TS are wind stress and a northward
pressure gradient force that arises from the fact that the surface of the south TS is higher than that
of the north TS. Southwest monsoons accelerate northward flow during the summer, but northeast
monsoons reduce it, even reversing it to southward flow during the period of strong northeasterly
winds [10,15,34,35].

The monthly values of fluxes and parameters exhibit four patterns. First, the water, TA, and DIC
fluxes (Figure 7a,d,e) are highest in July. The TA and DIC fluxes basically reflect the variation of water
flux, since the seasonal percentage differences of TA and DIC concentrations are smaller than the
variations of the nutrient concentrations (Figure 7). Second, the salinity, TA, and DIC concentrations
are lowest in September (Figure 7b,d,e). The third pattern contrasts with the second, as the temperature
is highest in September (Figure 7c). During the summer and autumn, the main water mass in the
PHC is the SCS water, which has a lower salinity than the WPS water at the same density in surface
water. Since precipitation in the summer is heavy, the water in the top layer is warmer and fresher
during the summer than the autumn. Yet, the strong summer water flow carries the colder and saltier
deeper water into the PHC (Figure 4b,f). The northward current is weakened in autumn owing to the
onset of the northeast monsoon, and reduces the coldness and saltiness of the seawater in the bottom.
The area-weighted salinity is lowest in September, when the area-weighted temperature is highest.
This phenomenon is consistent with the significant influence of the salty bottom water in the summer.
Fourth, the N, P, and Si fluxes are highest in June (Figure 7f,g,h). The high water flux increases nutrient
fluxes in the summer as the deeper water contains higher nutrient concentrations.
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4.2. Interannual Variations

To determine simplified patterns of the anomalous flux of TA, DIC, N, P, and Si, 30-month
moving averages were used to eliminate any seasonal pattern (Figure 8). Since the unusual negative
water fluxes in January 2011, January and December 2012 substantially influence the averaged values,
only data from January 1993 to December 2010 were considered. The 30-month moving average
patterns of PDO and El Niño 3.4 index are similar, with two obvious maxima in 1997 and 2004,
and minima in 2000 and 2008, respectively (Figure 8a). The two anomalous two-year maxima of the
water, TA, and DIC fluxes were in 1998–2000 and 2006–2008, respectively; and the two minima were in
1994–1996 and roughly 2002–2004 (Figure 8b,e,f; 0–55 m, 0–125 m). One obvious anomalous salinity
maximum occurred in 2004, and two anomalous salinity minima occurred in 2001 and 2009 (Figure 8c).
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The pattern of temperature anomalies is complex. Three maxima around 1999, 2002–2003, and 2008,
and three minima in 1996, 2001, and 2005 are observed (Figure 8d). With respect to anomalous nutrient
fluxes, one obvious maximum in 2004–2007 and one fuzzy maximum in 1996–1998 are observed.
One obvious minimum of nutrients fluxes occurs in 2008, and one fuzzy minimum occurs in 1999
(Figure 8g–i).
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Figure 8. The 30-month moving average time series of (a) PDO Index and Nino 3.4 Index; (b) water
volume anomaly; (c) area-weighted average salinity anomaly; (d) area-weighted average temperature
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flux anomaly. The black, red, and blue lines are for the whole section (0–125 m), the mean values in the
top layer (0–55 m), and the mean values in the bottom layer (55–125 m).
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Generally, the variation of the 30-month moving average PDO index tends to oppose that of water
volume in the top layer, but the values in both layers increase slightly with time (Figure 8b). For the
top layer, the increased PDO index is related to the reduced water flux and vice versa. The anomalous
salinity patterns in both layers mirror the pattern of the PDO index, and decrease slightly over time
(Figure 8b). The salinity abatement may be an indirect effect of the reduced Kuroshio intrusion,
and a simulated low salinity in 2001 has been reported [36]. If the decreased salinity is caused by the
reduced Kuroshio intrusion, then the temperature will decrease with the low salinity event in 2001.
However, the low salinity event in 2008 is associated with a high temperature signal, suggesting that
Kuroshio intrusion may not be the only factor that controls water mass mixing in the PHC (Figure 8c,d).
The anomalous TA and DIC patterns are similar to the anomalous water flux, and also increase with
time (Figure 8e,f). Generally, the TA and DIC fluxes rise as the PDO index decreases. However,
the nutrient fluxes vary with the PDO index, indicating that the nutrient concentrations are the main
controlling factor. The anomalous nutrient fluxes also increase slightly with time (Figure 8g–i).

5. Conclusions

The simulated chemical fluxes of TA, DIC, N, P, and Si are calculated from estimated chemical
concentrations using individual second-order polynomial regression equations and water flux that is
obtained using the HYCOM. Equations for TA, DIC, N, P, and Si concentrations were derived using
chemical concentrations that were measured from bottle samples, in situ salinity, and temperature.
All the chemical models presented herein explained more than 70% of the variability of the original
data. The individual daily chemical concentrations in various locations and at different water depths
were calculated using the derived equations and the daily salinity and temperature values that were
obtained using the HYCOM. The error ranges of the simulated chemical concentrations were estimated
using the double integral mean value theorem. The estimated annual northward fluxes of TA, DIC,
N, P, and Si are, 1.87 ± 0.79 × 106 mol C s−1, 1.65 ± 0.71 × 106 mol C s−1, 1203 ± 994 mol N s−1,
132 ± 85 mol P s−1, and 3062 ± 1828 mol Si s−1, respectively. The TA, DIC, P, and Si are transported
principally in the top layer, but the N flux is mainly transported in the bottom layer. The high water
flux in the summer is mostly responsible for the highest chemical fluxes in the whole year. There are
two kinds of chemical flux patterns. For the anomalous 30-month moving average TA and DIC,
the patterns follow that of the water flux. On the contrary, the patterns of anomalous 30-month
moving average nutrient fluxes are oppose to that of the water flux, but follow that of the PDO index.
The largest increases of N, P, and Si fluxes are around 10 to 20% in the period of rising PDO index,
especially during 2004–2007.
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Appendix A

Appendix A.1 Model Selection

Model selection was based upon the analysis of the mean square error (MSE) of prediction using
leave-one-out cross-validation [27], which estimates the prediction performance for the first, second,
and third order polynomial regression model, respectively. The smaller MSE of prediction indicates the
regression model has better performance in prediction. Using leave-one-out cross-validation, the set of
observations was repeatedly split into a validation set containing a single observation and a training
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set containing the remaining observations. By repeating the prediction of the validation set using the
model fitted by the training set, MSE was obtained by computing the average of summation of squared
residuals, which are the differences between observed and predicted values for each order polynomial
function. The second-order polynomial regression model with interaction term was found with the
smallest MSE of prediction on all chemical parameters and hence was chosen for fitting TA, DIC, N,
P and Si, respectively.

Appendix A.2 Prediction Interval of Daily Average of Chemical Parameters

In this section, we use an approach to estimate the prediction interval of the daily average for
each chemical parameter by using the mean value of function for double integrals, although the
probability density functions of daily salinity and temperature are unknown. Let xs and xt be
the assimilated daily average of salinity and temperature from HYCOM, respectively. Also, let ds

and dt be the deviations from the mean of daily salinity and temperature, and f (xs, xt) be the
fitted second-order polynomial regression function with respect to salinity xs and temperature xt.
We assume that xs and xt approximate to the true mean of distribution of daily salinity and temperature,
respectively. By Chebyshev’s inequality [28], there is at least a 75% chance that the true values of
daily salinity and temperature fall within the interval of salinity (xs − 2ds , xs + 2ds) and temperature
(xt − 2dt , xt + 2dt) if ds and dt are close to the true standard deviations. Let f be the mean value of
f (xs, xt) over the above intervals under the model. According to the mean value theorem for double
integrals [29], we have

f =
1

(4ds)(4dt)

∫ xs+2ds

xs−2ds

∫ xt+2dt

xt−2dt
f (xs, xt)dxtdxs.

With properly chosen ds and dt, f can be viewed as an approximation of the true daily average of
a chemical parameter under the model. Choosing larger ds and dt will mean f take irrelevant data
into account, while choosing smaller ds and dt will mean f ignores true values outside of the region.
Instead of finding the optimal ds and dt, we seek the interval that more likely bounds the true daily
average of chemical parameter under the model because we have no information about the distribution
of daily salinity and temperature. Based on the observed standard deviation from measured salinity
data among four seasons—0.25 (Winter), 0.22 (Spring), 0.76 (Summer), and 0.39 (Autumn), we fix
the ds. for each season as 0.25 (Winter), 0.25 (Spring), 0.75 (Summer), and 0.50 (Autumn) because
we assume that the daily standard deviation is small and is at most equal to the seasonal standard
deviation. We choose different dt from small to large in order to obtain the prediction interval of f since
we consider temperature to have a more significant effect than salinity does on chemical parameters.
Based on the statistics from Dongjidao Wave Station of the Center Weather Bureau, all the choices of dt

are 1 ◦C and 2 ◦C for spring, summer, and autumn, as the observed standard deviation is 2 ◦C. And dt

is 1 ◦C for winter, as the observed standard deviation is 1 ◦C. As the quantity f (xs, xt) is the lower
or upper bound of f when f (xs, xt) is convex or concave over some specific region, we still include
f (xs, xt) to determine the endpoint of the prediction interval. Let f min and f max be the minimum and
maximum value among the set containing those f ’s computed by different choices of dt and f (xs, xt).
Therefore,

[
f min, f max

]
is the prediction interval of the daily average for the chemical parameter, given

xs and xt.
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